

CHIP COILS (CHIP INDUCTORS) LQW18AS ----000 REFERENCE SPECIFICATION

1. Scope

This reference specification applies to chip coils (chip inductors) LQW18AS_00 series for general electronic equipment.

2. Part Numbering

(Ex.) LQ	W	18	Α	S	1N2	J	0	0	D
Product ID	Structure	Dimension (L × W)	Application and characteristic	0 ,	Inductance	Tolerance	Performance	Electrode specification	Packaging D: taping *B: bulk

^{*}B: Bulk packing is also available (taping condition: however, products without reels are put in plastic bags).

3. Part Number and Rating

Operating temperature range	-40°C to +125°C (including self-generated heat)
Storage temperature range	-40°C to +125°C

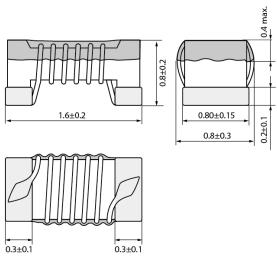
		Ind	uctance		DC	Calf recenant	Datad
Customer Part number	Murata Part number	Nominal value (nH)	Tolerance	Q (Min.)	resistance (Ω max.)	Self-resonant frequency (MHz min.)	Rated current (mA)
	LQW18AS1N2J00D	1.2	J: ±5%	35	0.020	16000	1400
	LQW18AS1N2C00D	1.2	C: ±0.2 nH	35	0.020	16000	1400
	LQW18AS1N6J00D	1.6	J: ±5%	24	0.030	12500	700
	LQW18AS1N8J00D	1.8	J: ±5%	16	0.045	12500	700
	LQW18AS2N0J00D	2.0	J: ±5%	20	0.130	12000	700
	LQW18AS3N3G00D	3.3	G: ±2%	35	0.045	5900	700
	LQW18AS3N3J00D	3.3	J: ±5%	35	0.045	5900	700
	LQW18AS3N6G00D	3.6	G: ±2%	22	0.063	5900	700
	LQW18AS3N6J00D	3.6	J: ±5%	22	0.063	5900	700
	LQW18AS3N9G00D	3.9	G: ±2%	22	0.080	6900	700
	LQW18AS3N9J00D	3.9	J: ±5%	22	0.080	6900	700
	LQW18AS4N3G00D	4.3	G: ±2%	22	0.063	5900	700
	LQW18AS4N3J00D	4.3	J: ±5%	22	0.063	5900	700
	LQW18AS4N7G00D	4.7	G: ±2%	20	0.116	5800	700
	LQW18AS4N7J00D	4.7	J: ±5%	20	0.116	5800	700
	LQW18AS5N1G00D	5.1	G: ±2%	20	0.140	5700	700
	LQW18AS5N1J00D	5.1	J: ±5%	20	0.140	5700	700
	LQW18AS5N6G00D	5.6	G: ±2%	26	0.075	4760	700
	LQW18AS5N6J00D	5.6	J: ±5%	26	0.075	4760	700
	LQW18AS6N8G00D	6.8	G: ±2%	27	0.110	5800	700
	LQW18AS6N8J00D	6.8	J: ±5%	27	0.110	5800	700
	LQW18AS7N5G00D	7.5	G: ±2%	28	0.106	4800	700
	LQW18AS7N5J00D	7.5	J: ±5%	28	0.106	4800	700
	LQW18AS8N2G00D	8.2	G: ±2%	30	0.115	4200	700
	LQW18AS8N2J00D	8.2	J: ±5%	30	0.115	4200	700
	LQW18AS8N7G00D	8.7	G: ±2%	28	0.109	4600	700
	LQW18AS8N7J00D	8.7	J: ±5%	28	0.109	4600	700
	LQW18AS9N5G00D	9.5	G: ±2%	28	0.135	5400	700
	LQW18AS9N5J00D	9.5	J: ±5%	28	0.135	5400	700
	LQW18AS10NG00D	10	G: ±2%	31	0.130	4800	700

Spec No.: JELF243A 0111D-01

Reference Only

Customer Part number	Murata Part number	Indo Nominal value	Tolerance	Q (Min.)	DC resistance	Self-resonant frequency	Rated current
		(nH)		,	(Ω max.)	(MHz min.)	(mA)
	LQW18AS10NJ00D	10	J: ±5%	31	0.130	4800	700
	LQW18AS11NG00D	11	G: ±2%	30	0.086	4000	700
	LQW18AS11NJ00D	11	J: ±5%	30	0.086	4000	700
	LQW18AS12NG00D	12	G: ±2%	35	0.130	4000	700
	LQW18AS12NJ00D	12	J: ±5%	35	0.130	4000	700
	LQW18AS15NG00D	15	G: ±2%	35	0.170	4000	700
	LQW18AS15NJ00D	15	J: ±5%	35	0.170	4000	700
	LQW18AS16NG00D	16	G: ±2%	34	0.104	3300	700
	LQW18AS16NJ00D	16	J: ±5%	34	0.104	3300	700
	LQW18AS18NG00D	18	G: ±2%	35	0.170	3100	700
	LQW18AS18NJ00D	18	J: ±5%	35	0.170	3100	700
	LQW18AS22NG00D	22	G: ±2%	38	0.190	3000	700
	LQW18AS22NJ00D	22	J: ±5%	38	0.190	3000	700
	LQW18AS23NG00D	23	G: ±2%	38	0.190	2850	700
	LQW18AS23NJ00D	23	J: ±5%	38	0.190	2850	700
	LQW18AS24NG00D	24	G: ±2%	36	0.135	2650	700
	LQW18AS24NJ00D	24	J: ±5%	36	0.135	2650	700
	LQW18AS27NG00D	27	G: ±2%	40	0.220	2800	600
	LQW18AS27NJ00D	27	J: ±5%	40	0.220	2800	600
	LQW18AS30NG00D	30	G: ±2%	37	0.144	2250	600
	LQW18AS30NJ00D	30	J: ±5%	37	0.144	2250	600
	LQW18AS33NG00D	33	G: ±2%	40	0.220	2300	600
	LQW18AS33NJ00D	33	J: ±5%	40	0.220	2300	600
	LQW18AS36NG00D	36	G: ±2%	37	0.250	2080	600
	LQW18AS36NJ00D	36	J: ±5%	37	0.250	2080	600
	LQW18AS39NG00D	39	G: ±2%	40	0.250	2200	600
	LQW18AS39NJ00D	39	J: ±5%	40	0.250	2200	600
	LQW18AS43NG00D	43	G: ±2%	38	0.280	2000	600
	LQW18AS43NJ00D	43	J: ±5%	38	0.280	2000	600
	LQW18AS47NG00D	47	G: ±2%	38	0.280	2000	600
	LQW18AS47NJ00D	47	J: ±5%	38	0.280	2000	600
	LQW18AS51NG00D	51	G: ±2%	35	0.270	1900	600
	LQW18AS51NJ00D	51	J: ±5%	35	0.270	1900	600
	LQW18AS56NG00D	56	G: ±2%	38	0.310	1900	600
	LQW18AS56NJ00D	56	J: ±5%	38	0.310	1900	600
	LQW18AS68NG00D	68	G: ±2%	37	0.340	1700	600
	LQW18AS68NJ00D	68	J: ±5%	37	0.340	1700	600
	LQW18AS72NG00D	72	G: ±2%	34	0.490	1700	400
	LQW18AS72NJ00D	72	J: ±5%	34	0.490	1700	400
	LQW18AS82NG00D	82	G: ±2%	34	0.540	1700	400
	LQW18AS82NJ00D	82	J: ±5%	34	0.540	1700	400
	LQW18ASR10G00D	100	G: ±2%	34	0.580	1400	400
	LQW18ASR10J00D	100	J: ±5%	34	0.580	1400	400
	LQW18ASR11G00D	110	G: ±2%	32	0.610	1350	300
	LQW18ASR11J00D	110	J: ±5%	32	0.610	1350	300
	LQW18ASR12G00D	120	G: ±2%	32	0.650	1300	300

Spec No.: JELF243A 0111D-01

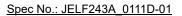

Reference Only

		Indi	uctance		DC	Self-resonant	Detect
Customer Part number	Murata Part number	Nominal value (nH)	Tolerance	Q (Min.)	resistance (Ω max.)	frequency (MHz min.)	Rated current (mA)
	LQW18ASR12J00D	120	J: ±5%	32	0.650	1300	300
	LQW18ASR15G00D	150	G: ±2%	28	0.920	990	280
	LQW18ASR15J00D	150	J: ±5%	28	0.920	990	280
	LQW18ASR18G00D	180	G: ±2%	25	1.250	990	240
	LQW18ASR18J00D	180	J: ±5%	25	1.250	990	240
	LQW18ASR20G00D	200	G: ±2%	25	1.980	900	200
	LQW18ASR20J00D	200	J: ±5%	25	1.980	900	200
	LQW18ASR21G00D	210	G: ±2%	27	2.060	895	200
	LQW18ASR21J00D	210	J: ±5%	27	2.060	895	200
	LQW18ASR22G00D	220	G: ±2%	25	2.100	900	200
	LQW18ASR22J00D	220	J: ±5%	25	2.100	900	200
	LQW18ASR25G00D	250	G: ±2%	25	3.550	822	120
	LQW18ASR25J00D	250	J: ±5%	25	3.550	822	120
	LQW18ASR27G00D	270	G: ±2%	24	2.300	900	170
	LQW18ASR27J00D	270	J: ±5%	24	2.300	900	170
	LQW18ASR33G00D	330	G: ±2%	25	3.890	900	100
	LQW18ASR33J00D	330	J: ±5%	25	3.890	900	100
	LQW18ASR39G00D	390	G: ±2%	25	4.350	900	100
	LQW18ASR39J00D	390	J: ±5%	25	4.350	900	100

4. Testing Conditions

Unless otherwise specified	Temperature: ordinary temperature (15°C to 35°C) Humidity: ordinary humidity [25% to 85% (RH)]
In case of doubt	Temperature: 20°C±2°C Humidity: 60% to 70% (RH) Atmospheric pressure: 86 kPa to 106 kPa

5. Appearance and Dimensions



(in mm)

Unit mass (typical value): 0.003 g

6. Marking

No marking.

7. Electrical Performance

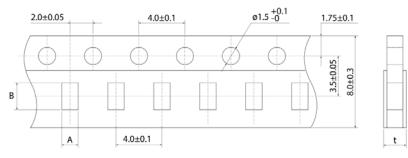
No.	Item	Specification	Test method
7.1	Inductance	Meet chapter 3 ratings.	Measuring equipment: Keysight E4991A or the equivalent Measuring frequency:
			Inductance 250 MHz 1.2 nH to 43 nH
			200 MHz 47 nH to 68 nH
			150 MHz 72 nH to 150 nH
			100 MHz 180 nH to 390 nH
			Q 250 MHz 1.2 nH to 43 nH
			200 MHz 47 nH to 68 nH
			150 MHz 72 nH to 150 nH
			100 MHz 180 nH to 390 nH
7.2	Q	Meet chapter 3 ratings.	Measuring conditions: Measurement signal level: Approx. 0 dBm Measurement terminal distance: 1.0 mm Electrical length: 10.0 mm Measuring fixture: Keysight 16197A Position the chip coil under test as shown in the measuring example below and connect it to the electrode by applying weight. Measurement example:
			Measuring method: see "Electrical performance: Measuring method for inductance/Q" in the chapter "14. Appendix".
7.3	DC resistance	Meet chapter 3 ratings.	Measuring equipment: digital multimeter
7.4	Self-resonant frequency	Meet chapter 3 ratings.	Measuring equipment: Keysight N5230A or the equivalent

8. Mechanical Performance

No.	Item	Specification	Test method
8.1	Shear test	No significant mechanical damage or no sign of electrode peeling off shall be observed.	Test substrate: glass-epoxy substrate Force application direction: Applying force: 5 N Holding time: 5 s±1 s

No.	Item	Specification	Test method
8.2	Bending test	No significant mechanical damage or no sign of electrode peeling off shall be observed.	Test substrate: glass-epoxy substrate (100 mm × 40 mm × 1.6 mm) Pressurizing speed: 1 mm/s Deflection: 2 mm Holding time: 30 s
			Pressure jig
			R340 ↓ F
			Deflection Product (in mm)
8.3	Vibration	Appearance shall have no significant mechanical damage.	Oscillation frequency: 10 Hz to 55 Hz to 10 Hz, for approx. 1 min Total amplitude: 1.5 mm Test time: 3 directions perpendicular to each other, 2 h for each direction (6 h in total)
8.4	Solderability	90% or more of the outer electrode shall be covered with new solder seamlessly.	Flux: immersed in ethanol solution [including an activator with a chlorine conversion value of 0.06(wt)%] with a rosin content of 25(wt)% for 5 s to 10 s. Solder: Sn-3.0Ag-0.5Cu solder Pre-heating: 150°C±10°C/60 s to 90 s Solder temperature: 240°C±5°C Immersion time: 3 s±1 s
8.5	Resistance to soldering heat	Appearance: No significant mechanical damage shall be observed. Inductance change rate: within ±5%	Flux: immersed in ethanol solution [including an activator with a chlorine conversion value of 0.06(wt)%] with a rosin content of 25(wt)% for 5 s to 10 s Solder: Sn-3.0Ag-0.5Cu solder Pre-heating: 150°C±10°C/60 s to 90 s Solder temperature: 270°C±5°C Immersion time: 10 s±1 s Post-treatment: left at a room condition for 24 h±2 h

9. Environmental Performance


The product is soldered on a substrate for test.

No.	Item	Specification	Test method
9.1	Heat resistance	Appearance: No significant mechanical damage shall be observed. Inductance change rate: within ±5% Q change rate: within ±20%	Temperature: 125°C±2°C Test time: 1000 h (+48 h, -0 h) Post-treatment: left at a room condition for 24 h±2 h
9.2	Cold resistance	Appearance: No significant mechanical damage shall be observed. Inductance change rate: within ±5% Q change rate: within ±20%	Temperature: -40°C±2°C Test time: 1000 h (+48 h, -0 h) Post-treatment: left at a room condition for 24 h±2 h
9.3	Humidity	Appearance: No significant mechanical damage shall be observed. Inductance change rate: within ±5% Q change rate: within ±20%	Temperature: 40°C±2°C Humidity: 90% (RH) to 95% (RH) Test time: 1000 h (+48 h, -0 h) Post-treatment: left at a room condition for 24 h±2 h
9.4	Temperature cycle	Appearance: No significant mechanical damage shall be observed. Inductance change rate: within ±5% Q change rate: within ±20%	Single cycle conditions: Step 1: -40°C±2°C/30 min±3 min Step 2: ordinary temperature/10 min to 15 min Step 3: +125°C±2°C/30 min±3 min Step 4: ordinary temperature/10 min to 15 min Number of testing: 10 cycles Post-treatment: left at a room condition for 24 h±2 h

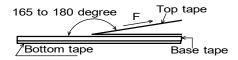
10. Specification of Packaging

10.1 Appearance and dimensions of tape (8 mm width/paper tape)

	Α	(1.06)
	В	(1.86)
	t	1.1 max.
•		(in mm)

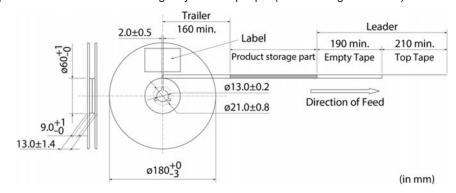
Direction of Feed

10.2 Taping specifications


Packing quantity (Standard quantity)	4000 pcs/reel
Packing method	The products are placed in embossed cavities of a base tape and sealed by a top tape and a bottom tape.
Feed hole position	The feed holes on the base tape are on the right side when the top tape is pulled toward the user.
Joint	The base tape and the top tape are seamless.
Number of missing products	Number of missing products within 0.1% of the number per reel or 1 pc., whichever is greater, and are not continuous. The specified quantity per reel is kept.

10.3 Break down force of tape

Break down force of top tape	5 N min.
Break down force of bottom tape	5 N min.

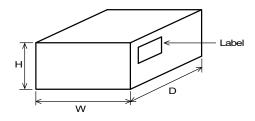

10.4 Peeling off force of top tape

Speed of peeling off	300 mm/min
Peeling off force	0.1 N to 0.6 N (The lower limit is for typical value.)

10.5 Dimensions of leader section, trailer section and reel

A vacant section is provided in the leader (start) section and trailer (end) section of the tape for the product. The leader section is further provided with an area consisting only of the top tape. (See the diagram below.)

10.6 Marking for reel


Customer part number, Murata part number, inspection number (*1), RoHS marking (*2), quantity, etc.

*1 Expression of inspect	etion No.: $\Diamond \Diamond \Diamond \Diamond$ (3)	 (1) Factory code (2) Date First digit: year/last digit of year Second digit: month/Jan. to Sep.→1 to 9, Oct. to Dec.→O, N, D Third, Fourth digit: day (3) Serial No.
*2 Expression of RoHS ROHS- Y (△)	7)	(1) RoHS regulation conformity (2) Murata classification number

10.7 Marking on outer box (corrugated box)

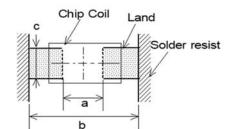
Customer name, purchasing order number, customer part number, Murata part number, RoHS marking (*2), quantity, etc.

10.8 Specification of outer box

Dimensions of outer box (mm)		Standard reel quantity in outer box (reel)	
W	D H		in outer box (reer)
186	186 93		5
* Above outer box size is typical. It depends on a quantity of an order.			

11. ACaution

Restricted applications	Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.		
	(1) Aircraft equipment	(6) Transportation equipment (vehicles, trains, ships, etc.)	
	(2) Aerospace equipment	(7) Traffic signal equipment	
	(3) Undersea equipment	(8) Disaster/crime prevention equipment	
	(4) Power plant control equipment	(9) Data-processing equipment	
	(5) Medical equipment	(10) Applications of similar complexity and/or reliability requirements to the applications listed in the above	


12. Precautions for Use

This product is for use only with reflow soldering. It is designed to be mounted by soldering. If you want to use other mounting method, for example, using a conductive adhesive, please consult us beforehand.

12.1 Land dimensions

The following diagram shows the recommended land dimensions for reflow soldering.

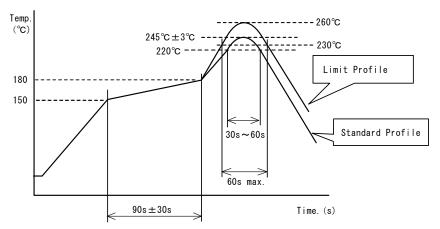
The land dimensions are designed in consideration of electrical characteristics and mountability. Use of other land dimensions may preclude achievement of performance. In some cases, it may result in poor solderability, including positional shift. If you use other land pattern, consider it adequately.

а	0.6 to 0.8
b	1.9 to 2.0
С	0.7 to 1.0
	(in mm)

12.2 Flux and solder used

Flux	 Use a rosin-based flux that includes an activator with a chlorine conversion value of 0.06(wt)% to 0.1(wt)%. Do not use a highly acidic flux with a halide content exceeding 0.2(wt)% (chlorine conversion value). Do not use a water-soluble flux.
Solder	 Use Sn-3.0Ag-0.5Cu solder. Standard thickness of solder paste: 100 μm to 150 μm

If you want to use a flux other than the above, please consult our technical department.


12.3 Soldering conditions (reflow)

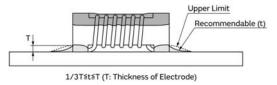
Pre-heating should be in such a way that the temperature difference between solder and product surface is limited to 150°C

Cooling into solvent after soldering also should be in such a way that the temperature difference is limited to 100°C max. Insufficient pre-heating may cause cracks on the product, resulting in the deterioration of product quality.

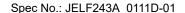
• Standard soldering profile and the limit soldering profile is as follows.

The excessive limit soldering conditions may cause leaching of the electrode and/or resulting in the deterioration of product quality.

	Standard profile	Limit profile
Pre-heating	150°C to 180°C/90 s±30 s	150°C to 180°C/90 s±30 s
Heating	Above 220°C/30 s to 60 s	Above 230°C/60 s max.
Peak temperature	245°C±3°C	260°C/10 s
Number of reflow cycles	2 times	2 times


12.4 Reworking with soldering iron

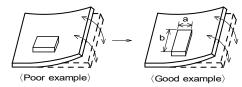
The following requirements must be met to rework a soldered product using a soldering iron.


Item	Requirement
Pre-heating	150°C/approx. 1 min
Tip temperature of soldering iron	350°C max.
Power consumption of soldering iron	80 W max.
Tip diameter of soldering iron	ø3 mm max.
Soldering time	3 s (+1 s, -0 s)
Number of reworking operations	2 times max.
* Avoid a direct contact of the tip of the soldering iron with the product. Such a direction contact may cause cracks in the ceramic body due to thermal shock.	

12.5 Solder volume

Solder shall be used not to increase the volume too much.

An increased solder volume increases mechanical stress on the product. Exceeding solder volume may cause the failure of mechanical or electrical performance.



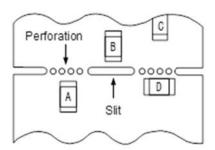
12.6 Product's location

The following shall be considered when designing and laying out PCBs.

(1) PCB shall be designed so that products are not subject to mechanical stress due to warping the board. [Products direction]

Products shall be located in the sideways direction (length: a < b) to the mechanical stress.

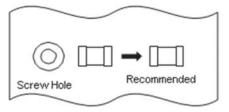
(2) Components location on PCB separation


It is effective to implement the following measures, to reduce stress in separating the board.

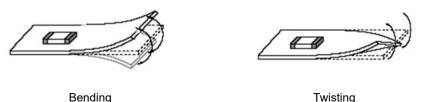
It is best to implement all of the following three measures; however, implement as many measures as possible to reduce stress.

Contents of measures	Stress level
(1) Turn the mounting direction of the component parallel to the board separation surface.	A > D*1
(2) Add slits in the board separation part.	A > B
(3) Keep the mounting position of the component away from the board separation surface.	A > C
*1 A > D is valid when stress is added vertically to the perferation as with hand separation	

^{&#}x27;1 A > D is valid when stress is added vertically to the perforation as with hand separation.


If a cutting disc is used, stress will be diagonal to the PCB, therefore A > D is invalid.

(3) Mounting components near screw holes


When a component is mounted near a screw hole, it may be affected by the board deflection that occurs during the tightening of the screw.

Mount the component in a position as far away from the screw holes as possible.

12.7 Handling of substrate

After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting to the substrate when cropping the substrate, inserting and removing a connector from the substrate or tightening screw to the substrate. Excessive mechanical stress may cause cracking in the product.

12.8 Cleaning

The product shall be cleaned under the following conditions.

- (1) The cleaning temperature shall be 60°C max. If isopropyl alcohol (IPA) is used, the cleaning temperature shall be 40°C max.
- (2) Perform ultrasonic cleaning under the following conditions. Exercise caution to prevent resonance phenomenon in mounted products and the PCB.

Item	Requirement
Power	20 W/L max.
Time	5 min max.
Frequency	28 kHz to 40 kHz

(3) Cleaner

Alcohol-based cleaner: IPA

Aqueous agent: PINE ALPHA ST-100S

- (4) There shall be no residual flux or residual cleaner. When using aqueous agent, rinse the product with deionized water adequately and completely dry it so that no cleaner is left.
- * For other cleaning, consult our technical department.

12.9 Storage and transportation

Storage period	Use the product within 12 months after delivery. If you do not use the product for more than 12 months, check solderability before using it.
Storage conditions	 The products shall be stored in a room not subject to rapid changes in temperature and humidity. The recommended temperature range is -10°C to +40°C. The recommended relative humidity range is 15% to 85%. Keeping the product in corrosive gases, such as sulfur, chlorine gas or acid, oxidizes the electrode, resulting in poor solderability or corrosion of the coil wire of the product. Do not keep products in bulk packaging. Doing so may cause collision between the products or between the products and other products, resulting in core chipping or wire breakage. Do not place the products directly on the floor; they should be placed on a palette so that they are not affected by humidity or dust. Avoid keeping the products in a place exposed to direct sunlight, heat or vibration.
Transportation	Excessive vibration and impact reduces the reliability of the products. Exercise caution when handling the products.

12.10 Resin coating

The inductance value may change due to high cure-stress of resin to be used for coating/molding products.

A wire breakage issue may occur by mechanical stress caused by the resin, amount/cured shape of resin, or operating condition etc. Some resin contains some impurities or chloride possible to generate chlorine by hydrolysis under some operating condition may cause corrosion of wire of coil, leading to wire breakage.

So, please pay your careful attention when you select resin in case of coating/molding the products with the resin. Prior to use the coating resin, please make sure no reliability issue is observed by evaluating products mounted on your board.

12.11 Handling of product

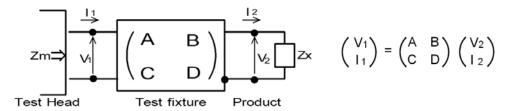
- Sharp material such as a pair of tweezers or other material such as bristles of cleaning brush, shall not be touched to the winding portion to prevent the breaking of wire.
- Mechanical shock should not be applied to the products mounted on the board to prevent the breaking of the core.

12.12 Handling with mounting equipment

- With some types of mounting equipment, a support pin pushes up the product from the bottom of the base (paper) tape when the product is sucked with the pick-up nozzle.
- When using this type of equipment, detach the support pin to prevent the breaking of wire on the product.
- In some cases, the laser recognition function of the mounting equipment may not recognize this product correctly. Please contact us when using laser recognition. (There is no problem with the permeation and reflection type.)

13. ANote

- (1) Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- (2) You are requested not to use our product deviating from the reference specifications.
- (3) The contents of this reference specification are subject to change without advance notice. Please approve our product specifications or transact the approval sheet for product specifications before ordering.



14. Appendix

Electrical performance: Measuring method for inductance/Q (Q measurement is applicable only when the Q value is included in the rating table.)

Perform measurement using the method described below. (Perform correction to ensure that the inductance value is compatible with inductors of other manufacturers.)

(1) Residual elements and stray elements of the measuring terminal can be expressed by the F parameter for the 2-pole terminal as shown in the figure below.

(2) The product's impedance value (Zx) and measured impedance value (Zm) can be expressed as shown below, by using the respective current and voltage for input/output.

$$Zm = \frac{V_1}{I_1} \qquad Zx = \frac{V_2}{I_2}$$

(3) Thus, the relationship between the product's impedance value (Zx) and measured impedance value (Zm) is as follows.

,		tare products importantes tards (2), and importantes tards (2), is do into
		Here,
		$\alpha = D/A = 1$
		β = B/D = Zsm - (1 - Yom Zsm) Zss
	$Zx=\alpha\frac{Zm-\beta}{}$	$\Gamma = C/A = Yom$
	ZX=α <u>1-ZmΓ</u>	
		Zsm: measured impedance when measuring terminal is shorted
		Zss: residual impedance of short chip (= Equivalent series inductance X ⁺¹)
		Yom: measured admittance when measuring terminal is open

^{*1} Important

X: In consideration of compatibility with other venders' products, Zss is defined as the correction value to fit nominal inductance of other venders' products.

When calibrating the measurement, please input X value instead of the equivalent series inductance (ShortL) for

Perform measurement of Q using the residual impedance 0.771 nH obtained through our conventional standard measurement method.

(4) Calculate inductance Lx and Qx using the equations shown below.

$Lx = \frac{\text{Im } (Zx)}{2\pi f}$ $Ox = \frac{\text{Im } (Zx)}{2\pi f}$	Lx: inductance of chip coil Qx: Q of chip coil f. measuring frequency
$Qx = \frac{IIII(ZX)}{Re(ZX)}$	f: measuring frequency

Table: Equivalent series inductance to fit nominal inductance of other venders' products

	Inductance		
Part number	X (nH) Equivalent series inductance	Measuring frequency (MHz)	
LQW18AS1N2_00	-0.142	250	
LQW18AS1N6_00	0.131	250	
LQW18AS1N8_00	0.061	250	
LQW18AS2N0_00	-0.015	250	
LQW18AS3N3_00	0.111	250	
LQW18AS3N6_00	0.231	250	
LQW18AS3N9_00	0.011	250	
LQW18AS4N3_00	0.251	250	
LQW18AS4N7_00	0.301	250	
LQW18AS5N1_00	0.071	250	
LQW18AS5N6_00	-0.079	250	
LQW18AS6N8_00	-0.019	250	
LQW18AS7N5_00	0.201	250	
LQW18AS8N2_00	0.281	250	
LQW18AS8N7_00	0.221	250	
LQW18AS9N5_00	0.021	250	
LQW18AS10N_00	-0.089	250	
LQW18AS11N_00	0.321	250	
LQW18AS12N_00	-0.189	250	
LQW18AS15N_00	-0.369	250	
LQW18AS16N_00	0.271	250	
LQW18AS18N_00	-0.429	250	
LQW18AS22N_00	-0.419	250	
LQW18AS23N_00	-0.509	250	
LQW18AS24N_00	0.401	250	
LQW18AS27N_00	0.171	250	
LQW18AS30N_00	-0.219	250	
LQW18AS33N_00	-0.589	250	
LQW18AS36N_00	-0.299	250	
LQW18AS39N_00	-0.859	250	
LQW18AS43N_00	0.231	250	
LQW18AS47N_00	-0.769	200	
LQW18AS51N_00	-0.949	200	
LQW18AS56N_00	-1.299	200	
LQW18AS68N_00	-1.739	200	
LQW18AS72N_00	-1.089	150	
LQW18AS82N_00	-1.909	150	
LQW18ASR10_00	-1.729	150	
LQW18ASR11_00	-2.829	150	
LQW18ASR12_00	-3.429	150	
LQW18ASR15_00	-4.429	150	
LQW18ASR18_00	-5.129	100	

Spec No.: JELF243A 0111D-01

Reference Only

	Inductance		
Part number	X (nH) Equivalent series inductance	Measuring frequency (MHz)	
LQW18ASR20_00	-4.629	100	
LQW18ASR21_00	-2.029	100	
LQW18ASR22_00	-5.229	100	
LQW18ASR25_00	-4.029	100	
LQW18ASR27_00	-4.329	100	
LQW18ASR33_00	-8.329	100	
LQW18ASR39_00	-13.329	100	