

TAI-SAW TECHNOLOGY CO., LTD. No. 3, Industrial 2nd Rd., Ping-Chen Industrial District,

No. 3, Industrial 2nd Rd., Ping-Chen Industrial District, Taoyuan, 324, Taiwan, R.O.C. TEL: 886-3-4690038 FAX: 886-3-4697532 E-mail: <u>tstsales@mail.taisaw.com</u> Web: <u>www.taisaw.com</u>

Product Specifications Approval Sheet

Product Name: GPS L5 Band 1176.45MHz Front-End Module 1.5x1.1 mm(BW=25MHz)

TST Parts No.: TN0126A (This Part is qualified with AEC-Q200)

Customer Part No.:_____

	Company:		
	Division:		
	Approved by :		
	Date:		
Cł	necked by:	Jerry Xu	
Ap	pproval by:	Jerry Xu Ryan Huang	
	ate:	2019/03/29	

- 1. Customer signed back is required before TST can proceed with sample build and receive orders.
- 2. Orders received without customer signed back will be regarded as agreement on the specifications.
- 3. Any specifications changes must be approved upon by both parties and a new revision of specifications shall be released to reflect the changes.

ŢℐŢ

TAI-SAW TECHNOLOGY CO., LTD.

No. 3, Industrial 2nd Rd., Ping-Chen Industrial District, Taoyuan, 324, Taiwan, R.O.C. TEL: 886-3-4690038 FAX: 886-3-4697532 E-mail: tstsales@mail.taisaw.com Web: www.taisaw.com

GPS L5 Band Front-End Module 1.5x1.1 mm

MODEL NO.: TN0126A

A. <u>GENERAL DESCRIPTION</u>:

- 1. The TN0126A is a front-end module (FEM) designed for GPS L5 band applications.
- 2. The TN0126A offers low noise figure, high linearity, and high out-band rejection characteristics brought by included high performance pre-SAW filter and low noise amplifier (LNA).
- 3. The TN0126A offers only two external components, and very small package that is 1.5x1.1mm.

B. <u>RECOMMENDED OPERATING CONDITION</u>: (Ta=25 ℃)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V _{DD}	1.5	-	3.42	V

C. ABSOLUTE MAXIMUM RATINGS:

- 1. Supply voltage: V_{DD}=5 V
- 2. Control voltage: V_{CTL}=5 V
- 3. Input power:
 - P_{IN} (inband): +10 dBm(V_{DD}=2.8 V, f=1176.45, 1164~1189 MHz)
 - P_{IN} (outband): +25 dBm(V_{DD}=2.8 V, f=50~1050, 1250~4000 MHz)
- 4. Power dissipation: $P_D=500 \text{ mW}(4\text{-layer FR4 PCB with through-hole}(101.5x114.5 \text{ mm}), Tj=100 ^{\circ}C)$
- 5. Terminating source impedance: Zs = 50 (Single-ended) Terminating load impedance: ZL = 50 (Single-ended)
- 6. Operating temperature range: -40 ℃ to +105 ℃
- 7. Storage temperature range: -40 ℃ to +110 ℃

D. <u>FEATURES</u>:

- 1. Low supply voltage: 1.8/ 2.8 V typ.
- 2. Low current consumption:
 - 3.0/3.7mA typ.(at V_{DD}=1.8/ 2.8 V, V_{CTL}=1.8 V)
 - 0.1µA typ.(at V_{DD}=1.8/ 2.8 V, V_{CTL}=0 V (Stand-by mode))
- 3. High gain: 15.5/16.0dB typ.(at V_{DD}=1.8/2.8 V,V_{CTL}=1.8 V, f=1176.45 MHz, 1164~1189 MHz)
- 4. Low noise figure:
 - 1.65/1.6dB typ.(at V_{DD}=1.8/ 2.8 V, V_{CTL}=1.8 V, f=1176.45 MHz)
- 5. High out band rejection(at V_{DD}=1.8/2.8 V, V_{CTL}=1.8 V):

TAI-SAW TECHNOLOGY CO., LTD.

TST DCC Release document

REV. NO.:1.0

Electrostatic Sensitive Device (ESD)

2

- 36 dBc typ.(f=704~915 MHz, relative to 1176.45 MHz)
- 40 dBc typ.(f=1710~1980 MHz, relative to 1176.45 MHz)
- 60 dBc typ.(f=2400~2500 MHz, relative to 1176.45 MHz)
- 6. Small package size: HFFP10-CD: 1.5mmx1.1mm (typ.), t=0.5mm (max.)
- 7. Moisture Sensitivity Level: Level 3

E. ELECTRICAL CHARACTERISTICS 1 (DC):

(General conditions: $T_a=+25$ °C)

Paran	Symbol	Unit	Min.	Тур.	Max.	
Supply Voltage		V _{DD}	V	1.5	-	3.3
Control Voltage (High	$V_{\text{CTL}(H)}$	V	1.5	1.8	3.3	
Control Voltage (Low)		V _{CTL(L)}	V	0	0	0.3
Supply Current 1	RF OFF, V _{DD} =2.8 V, V _{CTL} =1.8 V	I _{DD1}	mA	-	3.7	-
Supply Current 2	RF OFF, V _{DD} =1.8 V, V _{CTL} =1.8 V	I _{DD2}	mA	-	3.0	-
Supply Current 3 RF OFF, V _{DD} =2.8 V, V _{CTL} =0 V		I _{DD3}	μA	-	0.1	3.0
Supply Current 4	RF OFF, V _{DD} =1.8 V, V _{CTL} =0 V	I _{DD4}	μA	-	0.1	3.0
Control Current	rol Current V _{CTL} =1.8 V		μA	-	5.0	12.0

F. ELECTRICAL CHARACTERISTICS 2 (RF):

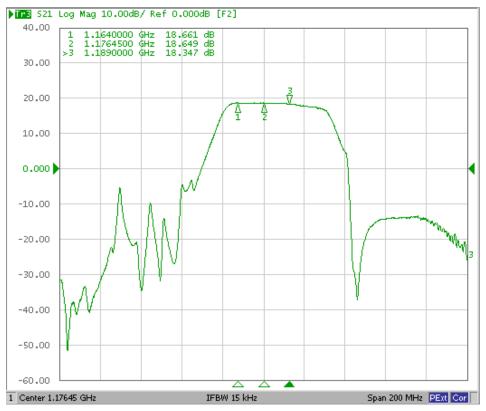
(General conditions: V_{DD} =2.8 V, V_{CTL} =1.8 V, f_{RF} =1176.45 MHz, 1164~1189, T_a =+25 °C, Z_s = Z_I =50 ohm, with application circuit)

Paran	Parameters Description			Min.	Тур.	Max.
Small Signal Gain (GPS)	f=1176.45MHz (GPS) Exclude PCB, Connector Losses(0.17 dB)	GainGPS1	dB	-	18	-
Noise Figure (GPS)	f=1176.45 MHz (GPS) Exclude PCB,Connector Losses (0.09 dB)	NFGPS1	dB	-	1.85	-
Input Power at 1dB Gain, Compression Point	f=1176.45 MHz	P-1dB(IN)1	dBm	-	-9.8	-
Input 3rd Order Intercept Point	f1=1176.45 MHz, f2=f1 +/-1 MHz, Pin=-30 dBm	IIP3_1	dBm	-	-1.5	-
Low Band Rejection	f=704 to 915 MHz, relative to 1176.45 MHz	BR_L1	dBc	-	46	-
GPS, GNS, BeiDou Rejection	f=1559 to 1606 MHz, relative to 1176.45 MHz	BR_G1	dBc		49	

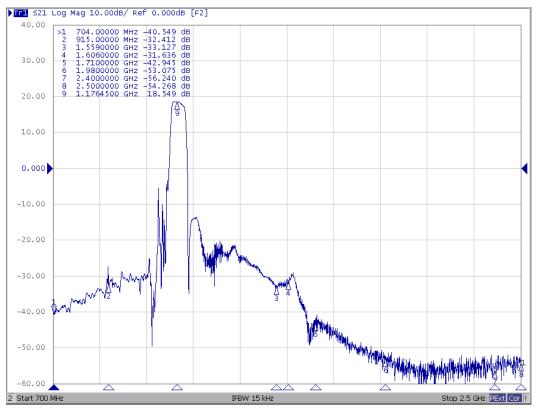
High Band Rejection	f=1710 to 1980 MHz, relative to 1176.45 MHz	BR_H	dBc	-	59	-
WLAN Band Rejection	f=2400 to 2500 MHz, relative to 1176.45 MHz	BR_W	dBc	-	69	-
RF IN Return Loss (GPS)	f=1176.45 MHz (GPS L5)	RLiGPS	dB	-	18	-
RF OUT Return Loss(GPS)	f=1176.45 MHz (GPS L5)	RLoGPS	dB	-	9.5	-
Group Delay Time Deviation	f=1164 to 1189 MHz (GPS L5)	GDTGLN1	ns	-	10	-

ELECTRICAL CHARACTERISTICS 3 (RF):

(General conditions: V_{DD} =1.8 V, V_{CTL} =1.8 V, f_{RF} =1176.45 MHz, 1164 to 1189, T_a =+25 °C, Z_s = Z_I =50 ohm, with application circuit)

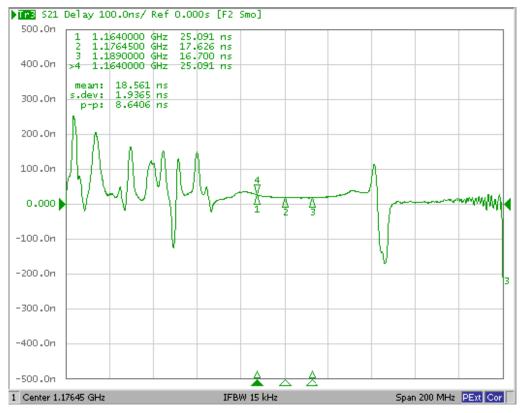

Para	meters Description	Symbol	Unit	Min.	Тур.	Max.
Small Signal Gain (GPS)	f=1176.45MHz (GPS) Exclude PCB, Connector Losses(0.17 dB)	GainGPS 1	dB	-	17.5	-
Noise Figure (GPS)	f=1176.45 MHz (GPS) Exclude PCB,Connector Losses (0.09 dB)	NFGPS1	dB	-	2.0	-
Input Power at 1dB Gain, Compression Point	f=1176.45 MHz	P-1dB(IN) 1	dBm	-	-9.8	-
Input 3rd Order Intercept Point	f1=1176.45 MHz, f2=f1 +/-1 MHz, Pin=-30 dBm	IIP3_1	dBm	-	-1.5	-
Low Band Rejection	f=704 to 915 MHz, relative to 1176.45 MHz	BR_L1	dBc	-	46	-
GPS, GNS, BeiDou Rejection	f=1559 to 1606 MHz, relative to 1176.45 MHz	BR_G1	dBc		49	
High Band Rejection	f=1710 to 1980 MHz, relative to 1176.45 MHz	BR_H	dBc	-	59	-
WLAN Band Rejection	f=2400 to 2500 MHz, relative to 1176.45 MHz	BR_W	dBc	-	69	-
RF IN Return Loss (GPS)	f=1176.45 MHz (GPS L5)	RLiGPS	dB	-	15	-
RF OUT Return Loss(GPS)	f=1176.45 MHz (GPS L5)	RLoGPS	dB	-	8.5	-
Group Delay Time Deviation	f=1164 to 1189 MHz (GPS L5)	GDTGLN	ns	-	10	-

FREQUENCY CHARACTERISTICS 1:

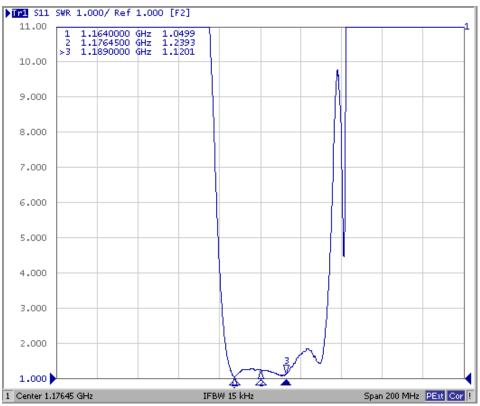

(Conditions: V_{DD} =2.8 V, V_{CTL} =1.8 V, Ta=25 °C, Z_s = Z_I =50 ohm, with application circuit.)

Transfer function:

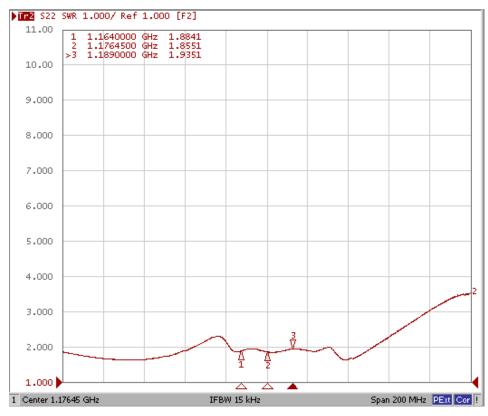
S21 response (span: 200 MHz)



S21 response

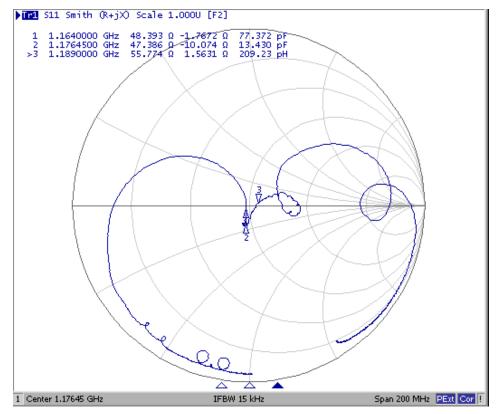

TAI-SAW TECHNOLOGY CO., LTD.

Group Delay

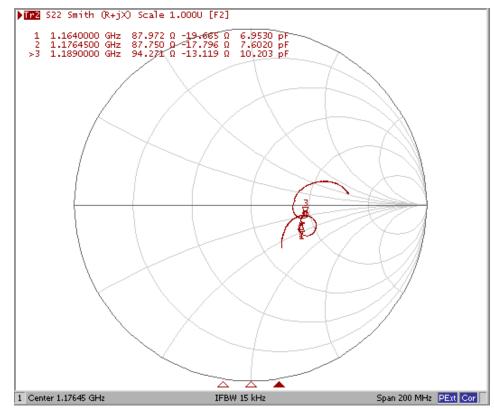


Reflection functions:

S11 VSWR



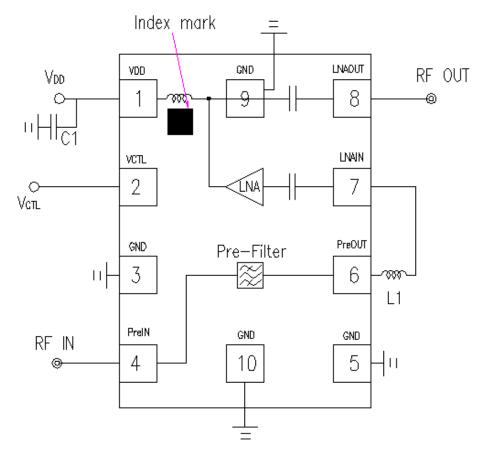
S22 VSWR



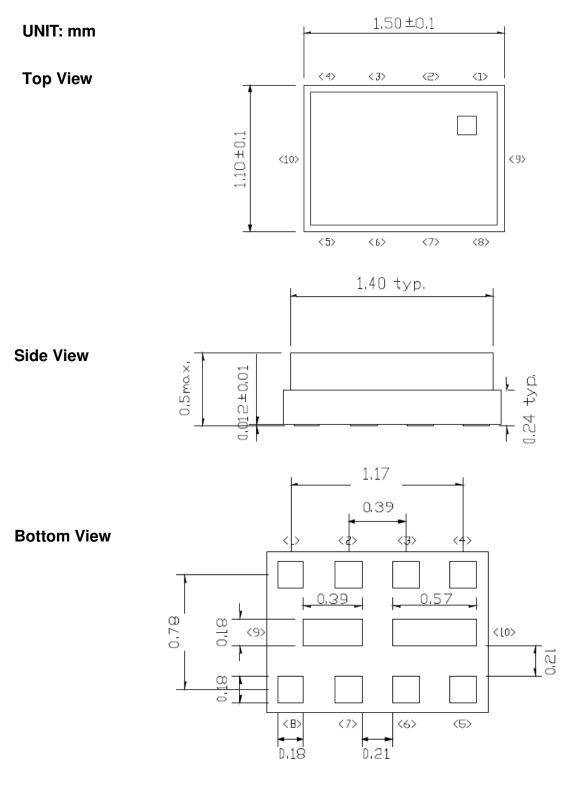
TAI-SAW TECHNOLOGY CO., LTD.

S11 Smith Chart


S22 Smith Chart


S11 Return Loss

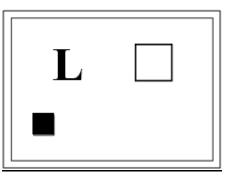
S22 Return Loss


G. MEASUREMENT CIRCUIT:

Top View

Parts ID	Manufacture	Value
L1	Murata LQW15AN_00 Series	27nH
C1	Murata GRM03 Series	1000pF

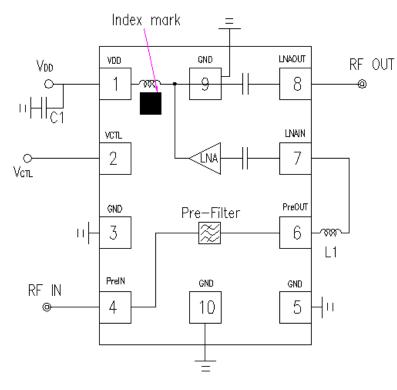
H. PACKAGE OUTLINE:



Electrode Dimensions clearance: ±0.05 mm Stand-off: 0.1 mm max. Substrate: Ceramic Terminal treat: Au Lid: SnAg/Kovar/Ni

Weight (typ.): 5 mg

TAI-SAW TECHNOLOGY CO., LTD.

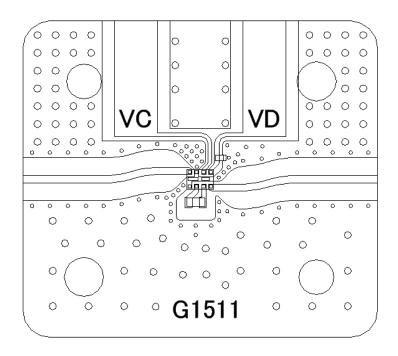

I. OUTLINE DRAWING:

: Year/Month Code (Follow the table)

YEAR/Month	1	2	3	4	5	6	7	8	9	10	11	12
2013	Α	в	C	D	E	F	U	Н	J	K	L	Μ
2014	Ν	Р	Ø	R	S	Т	υ	V	W	X	Y	Z
2015	а	b	C	d	е	f	g	h	j	k	I	m
2016	n	р	q	r	S	t	u	v	w	X	У	Z
2017	A	В	C	D	E	F	G	H	<u>J</u>	<u>K</u>	L	M
2018	N	P	Ø	<u>R</u>	<u>s</u>	<u>T</u>	U	V	W	<u>X</u>	<u>Y</u>	<u>Z</u>
2019	<u>a</u>	<u>b</u>	<u>c</u>	<u>d</u>	<u>e</u>	<u>f</u>	g	<u>h</u>	j	<u>k</u>	<u> </u>	<u>m</u>
2020	<u>n</u>	<u>p</u>	<u>q</u>	<u>r</u>	S	<u>t</u>	<u>u</u>	<u>v</u>	W	<u>×</u>	Y	<u>Z</u>

J. <u>PIN CONFIGURATION</u>:

Top View


TAI-SAW TECHNOLOGY CO., LTD.

TRUTH TABLE

$"H"=V_{CTL}(H), "L"=V_{CTL}(L)$					
VCTL	Mode				
Н	Active mode				
L	Stand-by mode				

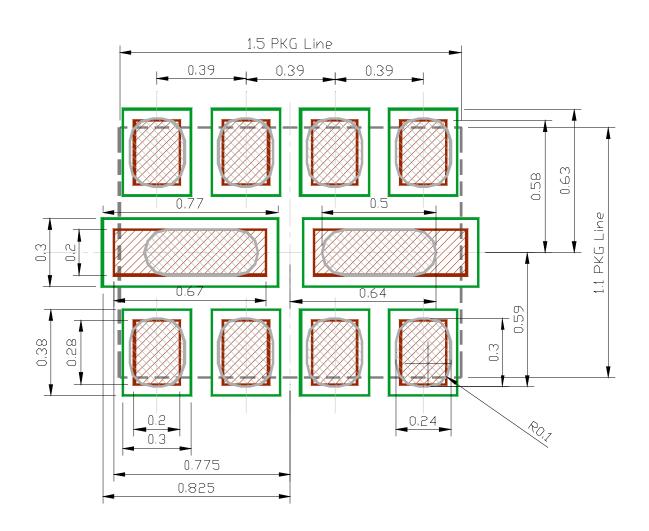
No.	SYMBOL	DESCRIPTION
1	VDD	Supply voltage terminal. Please connect bypass capacitor C1 with ground as close as possible.
2	VCTL	Control voltage terminal.
3	GND	Ground terminal. This terminal should be connected to the ground plane as close as possible for excellent RF performance.
4	PreIN	RF input terminal. This terminal connects to input of pre-SAW filter.
5	GND	Ground terminal. This terminal should be connected to the ground plane as close as possible for excellent RF performance.
6	PreOUT	Pre-SAW filter output terminal. This terminal connects to LNAIN with L1.
7	LNAIN	RF input terminal. This terminal requires only a matching inductor L1, and does not require DC blocking capacitor because of integrated capacitor.
8	LNAOUT	RF output terminal. This terminal requires no DC blocking capacitor since this terminal has integrated DC blocking capacitor.
9	GND	Ground terminal. This terminal should be connected to the ground plane as close as possible for excellent RF performance.
10	GND	Ground terminal. This terminal should be connected to the ground plane as close as possible for excellent RF performance.

K. EVALUATION BOARD:

PCB Substrate: TLX-9 Thickness: 0.12 mm Microstrip line width: 0.322 mm(Z_0 =50 Ω) Size: 14.0 mm x 14.0 mm

<PCB LAYOUT GUIDELINE>

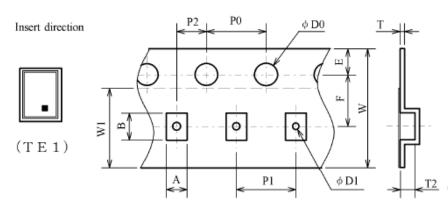
PRECAUTIONS


- Please layout ground pattern under this FEM in order not to couple with RFIN and RFOUT terminal.
- All external parts should be placed as close as possible to the FEM.
- For good RF performance, all GND terminals must be connected to PCB ground plane of substrate, and via-holes for GND should be placed near the FEM.

L. <u>RECOMMENDED FOOTPRINT PATTERN</u>:

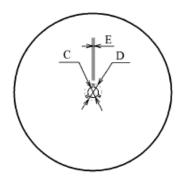
PKG: 1.5 mm x 1.1 mm Pin pitch: 0.39 mm 💹 : Land

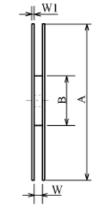
 $\ref{minipage}$: Mask (Open area) *Metal mask thickness: 100 μm


: Resist (Open area)

M. PACKING SPECIFICATION:

[TAPING DIMENSION]

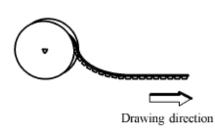

Brawing Direction

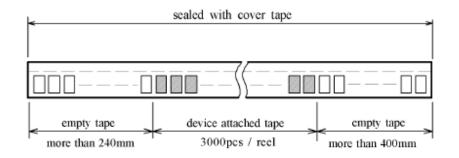


SYMBOL	DIMENSION	REMARKS
A	1.4±0.1	BOTTOM DIMENSION
В	1.8±0.1	BOTTOM DIMENSION
D0	1.5 +0.1	
D1	0.5 ± 0.05	
E	1.75±0.1	
F	3.5±0.05	
P0	4.0±0.1	
P1	4.0±0.1	
P2	2.0±0.05	
Т	0.25±0.05	
T2	0.7±0.1	
W	8.0±0.2	
W1	5.3±0.2	THICKNESS100µmMAX

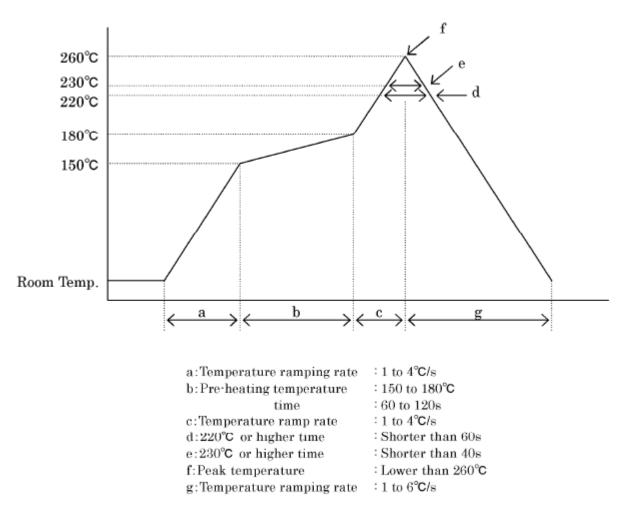
*Carrier tape material: PS (Anti-static) Cover tape material: PET (Anti-static)

[REEL DIMENSION]





DIMENSION
φ 180 ⁺⁰ -1.5
φ 66±0.5
φ 13±0.2
φ 21±0.8
2±0.5
9 ^{+1.0}
1.2


*MATERIAL : PS carbon (Anti-static)

[TAPING STATE**]**

N. <u>RECOMMENDED REFLOW PROFILE</u>:

* Recommended reflow soldering procedure

The temperature indicates at the surface of mold package.

Cautions on using this product

- This product contains Gallium-Arsenide (GaAs) which is a harmful material.
- Do NOT eat or put into mouth.
- Do NOT dispose in fire or break up this product.
- Do NOT chemically make gas or powder with this product.
- To waste this product, please obey the relating law of your country.

This product may be damaged with electric static discharge (ESD) or spike voltage. Please handle with care to avoid these damages.